

JV-003-001513

Seat No.

B. Sc. (Sem. V) (CBCS) Examination

October - 2019

Mathematics: Paper - BSMT - 501(A)

(Mathematical Analysis & Group Theory)

Faculty Code: 003

Subject Code: 001513

Time : $2\frac{1}{2}$ Hours] [Total Marks : 70]

Instruction: All questions are compulsory.

1 Answer the following questions briefly:

- 20
- (1) If E = [-1, 1] is subset of metric space R then find E^0 .
- (2) Define lower Riemann Integration.
- (3) Define Open Set.
- (4) Define Derived Set.
- (5) If (X, d) is a discrete metric space then $N(a.1/2) = \dots$
- (6) Define Neighborhood.
- (7) Define Norm of Partition.
- (8) For group $(z_5, +_5)$, then $o(4) = \dots$
- (9) Write the order of set of fourth roots of 1.
- (10) Write the number of element in symmetric group S_3 is
- (11) Define Normal Subgroup.
- (12) Define Quotient Group.

- (13) In usual notation $S(P, f) = \dots$
- (14) Find the order of the cyclic subgroup generated by element 2 of Z_8 .
- (15) Write the number of even permutation in symmetric group S_3 is
- (16) If $f:[1,3] \to R$, $f(x) = \frac{1}{x}$ and $P = \{1, 2, 3\}$ then $U(P,f) = \dots$
- (17) For group (C, \times) , find the inverse element of i^{121} .
- (18) Define Finer Partition.
- (19) If $\mu = (15)(34) \in S_6$ then $o(\mu) = \dots$
- (20) Every subgroup of commutative group is normal. (say True or False)
- 2 (a) Answer any three:

b] hat 6

- (1) If f is continuous bounded function over [a, b] then for any two partitions P_1 and P_2 prove that $L(P_1, f) \leq U(P_2, f)$.
- (2) If (X, d) is a metric space and $A, B \subset X$ and $A \subset B$ then $A' \subset B'$.
- (3) Obtain border set of the subset (1, 2) of metric space R.
- (4) Determine whether set $\{x \in R/x^2 2x 1 = 0\}$ is open or closed set.
- (5) Prove that every finite subset of any metric space is closed set.
- (6) Evaluate: $\lim_{n\to\infty} \frac{1}{n} \left[\left(\frac{1}{n} \right)^2 + \left(\frac{2}{n} \right)^2 + \dots + \left(\frac{n}{n} \right)^2 \right].$

(b) Answer any three:

9

- (1) State and prove first mean value theorem of *R*-integration.
- (2) If f is decreasing function in [a, b] then prove that f is R-integrable.
- (3) If function f is increasing in [a, b] then prove that f is Riemann integrable on [a, b].
- (4) State and prove principle of Housedorff's in metric space.
- (5) If (X, d) is a metric space and $A, B \subset X$ then prove $(A \cap B)^0 = A^0 \cap B^0.$
- (6) Prove that the arbitrary union of open sets of metric space is an open set.
- (c) Answer any two:

10

(1) Prove that

$$\lim_{n \to \infty} \left[\frac{1}{n} + \frac{n^2}{(n+1)^3} + \frac{n^2}{(n+2)^3} + \dots + \frac{1}{8n} \right] = \frac{3}{8}.$$

- (2) State and prove necessary and sufficient condition for a bounded function to be *R*-integrable.
- (3) Prove that $\frac{\pi^2}{6} \le \int_0^{\pi} \frac{x}{2 + \cos x} dx \le \frac{\pi^2}{2}$.
- (4) Prove that $\frac{1}{4}$ is in cantor set.
- (5) Prove that Closer set of any subset of a metric space is a closed set.

3 (a) Answer any three:

- (1) Prove that the identity element is unique in the group.
- (2) Give the example that the union of two subgroups of a group may not be a subgroup.
- (3) If G is a group then show that the set of all elements satisfies the equation $x^2 = e$ is a subgroup of G.
- (4) Check whether (Z, +) is cyclic group or not.
- (5) If $\sigma = (1\ 8)(3\ 6\ 4)(5\ 7)$, $\sigma \in S_8$ then determine whether σ is even or odd.
- (6) Define: Isomorphism between groups.
- (b) Answer any three:
 - (1) In a finite group G, prove that o(a) / o(G) for each $a \in G$.
 - (2) Prove that a group of prime order is cyclic.
 - (3) Draw the lattice diagram of S_3 .
 - (4) Show that the relation $a \equiv b \pmod{H}$ is an equivalence relation in group G where $H \leq G$.
 - (5) If K is a subgroup of G and H is a normal subgroups of group G then prove that $H \cap K$ is also a normal subgroup of K.
 - (6) Prove that intersection of two subgroups of a group is again a subgroup.
- (c) Answer any two:
 - (1) State and prove Cayley's theorem.
 - (2) Prove that the combination of two disjoint cycles in S_n is commutative.
 - (3) Prove that in symmetric group S_n , the number of elements in the set of even permutation A_n is equal to the number of elements in the set of odd permutation B_n and it is $\frac{n!}{2}$, $n \ge 2$.
 - (4) State and prove Lagrange's theorem for finite groups.
 - (5) A subgroup H of a group G is a normal subgroup of $G \Leftrightarrow aHa^{-1} \subset H$; $\forall a \in G$.

6

9

10